CCNA 1 v3.1 Module 1 Introduction to Networking

Objectives

Upon completion of this module, the student will be able to perform tasks related to the following:
1.1 Connecting to the Internet
1.2 Network Math

Requirements for Internet Connection

The requirements for Internet connection include the following:

- Physical connection
- Logical connection
- Applications that interpret the data and display the information

PC Basics

Network Interface Cards

Internal network interface card

PCMCIA Network interface card

NIC and Modem Installation

High-Speed and Dialup Connectivity

Connectivity Overview

- In early 1960 s , modems were introduced to provide connectivity for dumb terminals to a centrally based computer
- In 1970s, BBS allowed users to connect and post or read messages on a discussion board
- In 1980s, the transfer of files and graphics became desirable
- In 1990s, modem speed increased up to 56 kbps
- In 2000, high-speed services became desirable

TCPIIP Description and Configuration

- TCP/IP is a set of protocols developed to allow computers to share resources
- TCP/IP can be configured using the operating system tools

Testing Connectivity with Ping

```
[0:] C:IWINNTISystem32lcmd.exe
- 미 x
Microsoft Windows 2000 [Version 5.00.2195]
<C> Copyright 1985-2000 Microsoft Corp.
C:\> ping 127.0.0.1
Pinging 127.0.0.1 with 32 bytes of data:
Reply from 127.0.0.1: bytes=32 time<10ms TTL=128
Ping statistics for 127.0.0.1:
    Packets: Sent = 4, Recieived = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = Oms, Maximum = Oms, Average = Oms
C:\>
```


Binary Number System

Keyboard	Binary Code
A	01000001
B	01000010
C	01000011
D	01000100
E	01000101
F	01000110
G	01000111
H	01001000

Bits and Bytes

Units	Definition	Bytes*	Bits*	Examples
Bit (b)	Binary digit, a 1 or 0	1 bit	1 bit	On/Off; Open/Closed +5 Volts or 0 Volts
Byte (B)	Usually 8 bits	1 byte	8 bits	Represent the letter " X " as ASCII code
Kilobyte (KB)	1 kilobyte $=1024$ bytes	1000 bytes	8,000 bits	$\begin{aligned} & \text { Typical Email }=2 \mathrm{~KB} \\ & 10 \text {-page report }=10 \mathrm{~KB} \\ & \text { Early PCs }=64 \mathrm{~KB} \text { of } \mathrm{RAM} \end{aligned}$
Megabyte (MB)	$\begin{aligned} & 1 \text { megabyte } \\ & =1024 \text { kilobytes } \\ & =1,048,576 \text { bytes } \end{aligned}$	1 million bytes	8 million bits	$\begin{aligned} & \text { Floppy disks }=1.44 \mathrm{MB} \\ & \text { Typical RAM }=32 \mathrm{MB} \\ & \text { CDROM }=650 \mathrm{MB} \end{aligned}$
Gigabyte (GB)	$\begin{aligned} & 1 \text { gigabyte } \\ & =1024 \text { megabytes } \\ & =1,073741,824 \text { bytes } \end{aligned}$	1 billion bytes	8 billion bits	Typical Hard Drive $=4 \mathrm{~GB}$
Terabyte (TB)	$\begin{aligned} & 1 \text { terabyte } \\ & =1024 \text { gigabytes } \\ & =1,099,511,627,778 \text { bytes } \end{aligned}$	1 trillion bytes	8 trillion bits	Amount of data theoretically transmittable in optical fiber in one second

[^0]
Base 10 Numbers

Place Value	$\overline{1000^{\prime} \mathrm{s}} \overline{100 ' s} \overline{10 ' s} \overline{1 ' s}$
BaseExponent	$10^{3}=1000$ $10^{2}=100$ $10^{1}=10$ $10^{0}=1$
Number of Symbols	10
Symbols	$0,1,2,3,4,5,6,7,8,9$
Rationale	Typical number of fingers equals 10.

Base 2 (Binary) Numbers

Place Value	$\overline{1000} \frac{100}{10} \frac{}{1}$
Base ${ }^{\text {Exponent }}$	$10^{3}=1000$
	$10^{2}=100$
	$10^{1}=10$
	$10^{0}=1$
Number of Symbols	10
Symbols	$0,1,2,3,4,5,6,7,8,9$
Rationale	Typical number of fingers equals ten

Converting Decimal numbers to 8-bit Binary Numbers

Conversion exercise

Use the example below to convert the decimal number 168 to a binary number:

- 128 fits into 168 . So the left most bit in the binary number is a 1. 168-128 leaves 40 .
- 64 does not fit into 40 . So the second bit in from the left is a 0 .
- 32 fits into 40 . So the third bit in from the left is a 1. 40-32 leaves 8 .
- 16 does not fit into 8 so the fourth bit in from the left is a 0 .
- 8 fits into 8 . So the fifth bit in from the left is a $1.8-8$ leaves 0 . So, the remaining bits to the right are all 0 .

Result: Decimal $168=10101000$

Converting 8-bit Binary Numbers to Decimal Numbers

Convert the binary number 01110000 to a decintal number.

Note: Work from right to left
Remember that anything raised to the 0 power is 1 . Therefore
$2^{0}=1$

$$
+
$$

$$
\begin{aligned}
& 0 \times 2^{0}=0 \\
& 0 \times 2^{1}=0 \\
& 0 \times 2^{2}=0 \\
& 0 \times 2^{3}=0 \\
& 1 \times 2^{4}=16 \\
& 1 \times 2^{5}=32 \\
& 1 \times 2^{6}=64 \\
& 0 \times 2^{7}=0 \\
& \hline 112
\end{aligned}
$$

Note: The sum of the powers of 2 that have a 1 in their position

Four-Octet Dotted-decimal Representation of 32Bit Binary Numbers

Cisco.com

Decimal	11001000		01110010		00000110	00110011	
Binary	200		.	114	e	6	
	number	dot	number	dot	number	dot	number

Hexadecimal

Decimal	Binary	Hexadecimal
0	00000000	00
1	00000001	01
2	00000010	02
3	00000011	03
4	00000100	04
5	00000101	05
6	00000110	06
7	00000111	07
8	00001000	08
9	00001001	09
10	00001010	$0 A$
11	00001011	$0 B$
12	00001100	$0 C$
13	00001101	$0 D$
14	00001110	0 E
15	00001111	$0 F$
16	00010000	10
32	00100000	20
64	01000000	40
128	10000000	80
255	11111111	FF

Boolean or Binary Logic

IP Addresses and Network Masks

Summary

- Three requirements for an Internet connection are a physical connection, a logical connection, and a Web browser.
- Computers recognize and process data using a binary numbering system.
- The number system used most frequently is the decimal number system.
- The hexadecimal number system is used when working with computers because it can be used to represent binary numbers in a more readable form.

[^0]: * Common or approximate bytes or bits

